87 research outputs found

    Fixed-Parameter Tractability of Token Jumping on Planar Graphs

    Full text link
    Suppose that we are given two independent sets I0I_0 and IrI_r of a graph such that ∣I0∣=∣Ir∣|I_0| = |I_r|, and imagine that a token is placed on each vertex in I0I_0. The token jumping problem is to determine whether there exists a sequence of independent sets which transforms I0I_0 into IrI_r so that each independent set in the sequence results from the previous one by moving exactly one token to another vertex. This problem is known to be PSPACE-complete even for planar graphs of maximum degree three, and W[1]-hard for general graphs when parameterized by the number of tokens. In this paper, we present a fixed-parameter algorithm for the token jumping problem on planar graphs, where the parameter is only the number of tokens. Furthermore, the algorithm can be modified so that it finds a shortest sequence for a yes-instance. The same scheme of the algorithms can be applied to a wider class of graphs, K3,tK_{3,t}-free graphs for any fixed integer t≥3t \ge 3, and it yields fixed-parameter algorithms

    A reconfigurations analogue of Brooks’ theorem.

    Get PDF
    Let G be a simple undirected graph on n vertices with maximum degree Δ. Brooks’ Theorem states that G has a Δ-colouring unless G is a complete graph, or a cycle with an odd number of vertices. To recolour G is to obtain a new proper colouring by changing the colour of one vertex. We show that from a k-colouring, k > Δ, a Δ-colouring of G can be obtained by a sequence of O(n 2) recolourings using only the original k colours unless G is a complete graph or a cycle with an odd number of vertices, or k = Δ + 1, G is Δ-regular and, for each vertex v in G, no two neighbours of v are coloured alike. We use this result to study the reconfiguration graph R k (G) of the k-colourings of G. The vertex set of R k (G) is the set of all possible k-colourings of G and two colourings are adjacent if they differ on exactly one vertex. It is known that if k ≤ Δ(G), then R k (G) might not be connected and it is possible that its connected components have superpolynomial diameter, if k ≥ Δ(G) + 2, then R k (G) is connected and has diameter O(n 2). We complete this structural classification by settling the missing case: if k = Δ(G) + 1, then R k (G) consists of isolated vertices and at most one further component which has diameter O(n 2). We also describe completely the computational complexity classification of the problem of deciding whether two k-colourings of a graph G of maximum degree Δ belong to the same component of R k (G) by settling the case k = Δ(G) + 1. The problem is O(n 2) time solvable for k = 3, PSPACE-complete for 4 ≤ k ≤ Δ(G), O(n) time solvable for k = Δ(G) + 1, O(1) time solvable for k ≥ Δ(G) + 2 (the answer is always yes)

    Independent Set Reconfiguration in Cographs

    Get PDF
    We study the following independent set reconfiguration problem, called TAR-Reachability: given two independent sets II and JJ of a graph GG, both of size at least kk, is it possible to transform II into JJ by adding and removing vertices one-by-one, while maintaining an independent set of size at least kk throughout? This problem is known to be PSPACE-hard in general. For the case that GG is a cograph (i.e. P4P_4-free graph) on nn vertices, we show that it can be solved in time O(n2)O(n^2), and that the length of a shortest reconfiguration sequence from II to JJ is bounded by 4n−2k4n-2k, if such a sequence exists. More generally, we show that if XX is a graph class for which (i) TAR-Reachability can be solved efficiently, (ii) maximum independent sets can be computed efficiently, and which satisfies a certain additional property, then the problem can be solved efficiently for any graph that can be obtained from a collection of graphs in XX using disjoint union and complete join operations. Chordal graphs are given as an example of such a class XX

    Reconfiguration of Dominating Sets

    Full text link
    We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph GG is a set SS of vertices such that each vertex is either in SS or has a neighbour in SS. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions ss and tt such that each pair of consecutive solutions is adjacent according to a specified adjacency relation. Two dominating sets are adjacent if one can be formed from the other by the addition or deletion of a single vertex. For various values of kk, we consider properties of Dk(G)D_k(G), the graph consisting of a vertex for each dominating set of size at most kk and edges specified by the adjacency relation. Addressing an open question posed by Haas and Seyffarth, we demonstrate that DΓ(G)+1(G)D_{\Gamma(G)+1}(G) is not necessarily connected, for Γ(G)\Gamma(G) the maximum cardinality of a minimal dominating set in GG. The result holds even when graphs are constrained to be planar, of bounded tree-width, or bb-partite for b≥3b \ge 3. Moreover, we construct an infinite family of graphs such that Dγ(G)+1(G)D_{\gamma(G)+1}(G) has exponential diameter, for γ(G)\gamma(G) the minimum size of a dominating set. On the positive side, we show that Dn−m(G)D_{n-m}(G) is connected and of linear diameter for any graph GG on nn vertices having at least m+1m+1 independent edges.Comment: 12 pages, 4 figure

    Reconfiguring Independent Sets in Claw-Free Graphs

    Get PDF
    We present a polynomial-time algorithm that, given two independent sets in a claw-free graph GG, decides whether one can be transformed into the other by a sequence of elementary steps. Each elementary step is to remove a vertex vv from the current independent set SS and to add a new vertex ww (not in SS) such that the result is again an independent set. We also consider the more restricted model where vv and ww have to be adjacent

    Token Jumping in minor-closed classes

    Full text link
    Given two kk-independent sets II and JJ of a graph GG, one can ask if it is possible to transform the one into the other in such a way that, at any step, we replace one vertex of the current independent set by another while keeping the property of being independent. Deciding this problem, known as the Token Jumping (TJ) reconfiguration problem, is PSPACE-complete even on planar graphs. Ito et al. proved in 2014 that the problem is FPT parameterized by kk if the input graph is K3,â„“K_{3,\ell}-free. We prove that the result of Ito et al. can be extended to any Kâ„“,â„“K_{\ell,\ell}-free graphs. In other words, if GG is a Kâ„“,â„“K_{\ell,\ell}-free graph, then it is possible to decide in FPT-time if II can be transformed into JJ. As a by product, the TJ-reconfiguration problem is FPT in many well-known classes of graphs such as any minor-free class

    Using contracted solution graphs for solving reconfiguration problems.

    Get PDF
    We introduce a dynamic programming method for solving reconfiguration problems, based on contracted solution graphs, which are obtained from solution graphs by performing an appropriate series of edge contractions that decrease the graph size without losing any critical information needed to solve the reconfiguration problem under consideration. As an example, we consider a well-studied problem: given two k-colorings alpha and beta of a graph G, can alpha be modified into beta by recoloring one vertex of G at a time, while maintaining a k-coloring throughout? By applying our method in combination with a thorough exploitation of the graph structure we obtain a polynomial-time algorithm for (k-2)-connected chordal graphs

    Using contracted solution graphs for solving reconfiguration problems

    Get PDF
    We introduce a dynamic programming method for solving reconfiguration problems, based on contracted solution graphs, which are obtained from solution graphs by performing an appropriate series of edge contractions that decrease the graph size without losing any critical information needed to solve the reconfiguration problem under consideration. As an example, we consider a well-studied problem: given two k-colorings alpha and beta of a graph G, can alpha be modified into beta by recoloring one vertex of G at a time, while maintaining a k-coloring throughout? By applying our method in combination with a thorough exploitation of the graph structure we obtain a polynomial-time algorithm for (k-2)-connected chordal graphs

    The complexity of dominating set reconfiguration

    Full text link
    Suppose that we are given two dominating sets DsD_s and DtD_t of a graph GG whose cardinalities are at most a given threshold kk. Then, we are asked whether there exists a sequence of dominating sets of GG between DsD_s and DtD_t such that each dominating set in the sequence is of cardinality at most kk and can be obtained from the previous one by either adding or deleting exactly one vertex. This problem is known to be PSPACE-complete in general. In this paper, we study the complexity of this decision problem from the viewpoint of graph classes. We first prove that the problem remains PSPACE-complete even for planar graphs, bounded bandwidth graphs, split graphs, and bipartite graphs. We then give a general scheme to construct linear-time algorithms and show that the problem can be solved in linear time for cographs, trees, and interval graphs. Furthermore, for these tractable cases, we can obtain a desired sequence such that the number of additions and deletions is bounded by O(n)O(n), where nn is the number of vertices in the input graph

    Reconfiguration of Cliques in a Graph

    Full text link
    We study reconfiguration problems for cliques in a graph, which determine whether there exists a sequence of cliques that transforms a given clique into another one in a step-by-step fashion. As one step of a transformation, we consider three different types of rules, which are defined and studied in reconfiguration problems for independent sets. We first prove that all the three rules are equivalent in cliques. We then show that the problems are PSPACE-complete for perfect graphs, while we give polynomial-time algorithms for several classes of graphs, such as even-hole-free graphs and cographs. In particular, the shortest variant, which computes the shortest length of a desired sequence, can be solved in polynomial time for chordal graphs, bipartite graphs, planar graphs, and bounded treewidth graphs
    • …
    corecore